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Abstract
The technique of Darboux transformation is applied to the nonlocal partner
of the two-dimensional periodic An−1 Toda lattice. This system is shown
to admit a representation as the compatibility conditions of direct and dual
overdetermined linear systems with a quantized spectral parameter. We give the
generalization of the Darboux transformation technique on linear equations of
this type. We present the connections between the solutions of overdetermined
linear systems and their expansions in series in the neighbourhood of singular
points. The solutions of the nonlocal Toda lattice and infinite hierarchies of the
infinitesimal symmetries and conservation laws are obtained.

PACS numbers: 05.45.Yv, 02.30.Jr

1. Introduction

It is well known that some nonlocal differential equations of great physical significance
(e.g. the Benjamin–Ono (BO) equation [1–3], the intermediate long wave (ILW) equation
[4, 5]) possess the same mathematical properties as local nonlinear equations integrable in
the framework of the inverse scattering transformation (IST) method [6]. Such nonlocal
equations have been found to have the following characteristics: multi-soliton solutions
[4, 7–11]; infinitely many conservation laws [12, 15–18]; the Bäcklund transformation
[15–18]; to pass the Painlev’e test [18]; to be represented in bilinear form [8–11, 15–18]
and as the compatibility condition of the overdetermined linear system (Lax pair) [13–18]; to
possess algebro–geometric solutions [19]. An effective technique of Darboux transformation
(DT) [20] has also been applied to nonlocal equations, such as the ILW equation, the nonlocal
analogue of the Kadomtsev–Petviashvili equation [14, 19] and the nonlocal Toda equation
[21]. This technique allows us to obtain the infinite hierarchies of solutions of Lax pairs
and associated nonlinear equations arising from the compatibility condition. Carrying out
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the proper sequence of the DTs adds the one-soliton component of the solution to the initial
solution of nonlinear integrable equations.

The noncommutative (‘quantum’) generalization of the spectral parameter of the usual
Lax pair has been suggested in [22] to construct the hierarchies of nonlocal counterparts of
the nonlinear equations admitting the compatibility condition representation. In this way, the
hierarchies of the ILWn equations, modified ILWn equations and nonlocal Toda lattice have
been obtained [22, 23]. Nonlocal bilinear equations for the latter system, which have been
proposed in [24], should be modified to derive the multi-soliton solutions by applying the
ordinary procedure of perturbation theory to a constant solution [25]. It is also inconvenient
in the framework of the bilinear approach to determine a set of exponents, whose mutual
products do not appear in the expansion for multi-soliton solutions, and, consequently, to
describe soliton solutions.

In this paper, we extend the DT technique to nonlocal partners of Lax pairs and associated
nonlocal nonlinear equations. The dual Lax pair with a quantized spectral parameter is
introduced in section 2. We find the connections between the spaces of solutions of direct
and dual Lax pairs. The reduction constraint on the Lax pair coefficients that leads to the
nonlocalAn−1 Toda lattice (n ∈ N) is discussed in section 3. This nonlinear system is written
here in bilinear form, which is suitable for exploiting the usual perturbation theory and whose
one-soliton expansion, as shown in the next section, has infinitely many exponential terms. In
section 4, we present the theorem establishing the covariance of the Lax pairs with a quantized
spectral parameter with respect to the DT of direct pairs. For the case of the Toda lattice, we
formulate sufficient conditions to keep the reduction constraint on the Lax pair coefficients
while performing this transformation. Similarly we construct the DT of a dual pair preserving
the reduction, whose product with the DT of the direct pair yields the formulae of binary
DT. Iterations of these transformations on zero background give multi-soliton solutions that
depend on infinitely many arbitrary parameters. The formulae of infinitesimal DT and the
expansions in series of the Lax pair solutions in the neighbourhood of singular points are
presented in section 5. In this section, we give a simple way to produce the infinite hierarchies
of the infinitesimal symmetries and conservation laws of the nonlocalAn−1 Toda lattice.

2. Lax pairs with a quantized spectral parameter

Let us consider the overdetermined linear system{
�x = −JT�� + U�

�t = AT −1��−1
(1)

for the matrix n × n function � ≡ �(x, t,�). Here, � = diag(λj ) is the constant matrix, T
is the translation operator, T = exp(h∂x) (where h is a constant), and matrices J,U and A are
independent of�. This system coincides with usual Lax pair studied in the framework of the
IST method [6] if h = 0. The matrix � in this case is called the matrix spectral parameter.
The joint action of operator T and matrix � on solution � can be regarded as a notion of
the quantized spectral parameter [22]. We refer to equations (1) as the direct Lax pair in the
following. The compatibility condition �xt = �tx of the direct Lax pair gives the system of
nonlocal matrix equations:


Jt = 0
Ut = JTA− AT −1J

Ax = UA− AT −1U.

(2)
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It is remarkable that equations (2) are also derived from the compatibility condition of the
overdetermined linear system that is ‘dual’ to the Lax pair (1). This system (dual Lax pair) is
written in following manner:{

�x = K(T −1�J)−�U

�t = −K−1(T�A)
(3)

with � ≡ �(x, t,K) and K = diag(æj ) being the matrix solution and matrix spectral
parameter of the dual system, respectively. The spaces of solutions of direct and dual Lax
pairs are connected in the local case. Such a connection turns out to exist for the Lax pairs
considered here. Namely, the matrix function

R(�,�) = K

∫ x+h

x

(T −1�J)� dx + ��

is independent of variables x and t if K = � = λE (λ is scalar spectral parameter). Another
relation between the spaces of solutions is provided by the closure of a differential one-form

dω(�,�) = �JT� dx +K−1(T�A)��−1 dt . (4)

3. Nonlocal two-dimensional Toda lattice

Let matrix J be defined as given

J = {δj,k−1} (5)

(the indices are supposed hereafter to be equal on modulo n). System (2) is valid if we put

U = σx A = exp(σ )J−1 exp(−T −1σ) (6)

where

σ = diag(σj ) (7)

and functions σj ≡ σj (x, t) (j = 1, . . . , n) are the solutions of the nonlocal generalization of
the two-dimensional periodic An−1 Toda lattice [26]

σj,xt = exp(T σj+1 − σj )− exp(σj − T −1σj−1). (8)

Changing variables

σj = log
T τj+1

τj

gives equations (8) in bilinear form

DxDtτj · τj + 2τ 2
j = 2(T τj+1)T

−1τj−1 (9)

(Dx and Dt denote the Hirota derivatives [25]). In the local case, these equations give
the bilinear representation of the two-dimensional Toda lattice (compare with equation (4.3)
in [24]).

The important feature of nonlocal direct and dual Lax pairs is that the matrix U of general
form cannot be led to the algebra SL(n) case by means of the gauge transformation [6].
However, the coefficients of linear systems (1) and (3) admit a new reduction constraint which
is in keeping with system (8)

σ = ρE (10)

where a single dependent variable ρ solves the equation (A0 Toda lattice)

ρxt = (T − 1) exp(ρ − T −1ρ). (11)
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It should be stressed that this equation, whose local analogue is trivial, appears as the
compatibility condition of the overdetermined linear systems of the arbitrary matrix dimension.
Making the dependent variable transformation in equation (11)

ρ = (T − 1) log τ

one obtains the bilinear equation for τ

DxDtτ · τ + 2τ 2 = 2(T τ)T −1τ. (12)

Equation (11) was derived in [27] as the continuous limit of the lattice equations describing
the transfer of energy of plasma oscillations. The nonlocal equation that can be written in the
form of equation (11), with operator T defined in a different manner, was considered in [21].

The soliton solutions of equations (9) and (11) can be constructed applying the usual
procedure of the Hirota method [25]. However, the explicit form of the one-soliton solution
is not obvious in this approach. To generate the hierarchy of solutions of the nonlocal Toda
lattice we develop another method here.

4. Darboux transformation technique and solitons

The underlying property of the DT technique is the existence of the kernel of transformations
of the Lax pair solutions for some value of the spectral parameter. This property is exploited
in this paper to generalize the technique considered for the nonlocal equations. For the sake
of convenience we introduce notation

�(�,�) =
∫ (x,t)

(x0,t0)

dω (�,�) + C(�,�)

where it is supposed that the constant matrix C(�,�) can be determined from equation

KC(�,�)− C(�,�)� = R(�,�)|(x0,t0).

Theorem. Let � be a solution of direct Lax pair (1) with matrix spectral parameter M. Then
matrix

�̃ = �x −�x�
−1� (13)

and, if there exists an appropriate matrix C(�,�), matrix

�̃ = �(�,�)(T�−1)J−1 (14)

are solutions respectively of direct and dual Lax pairs{
�̃x = −JT �̃� + Ũ�̃
�̃t = ÃT −1�̃�−1

{
�̃x = K(T −1�̃J )− �̃Ũ

�̃t = −K−1(T �̃Ã)

whose coefficients are

Ũ = U + JxJ−1 + J (T�x�
−1)J−1 −�x�

−1 (15)

Ã = J (T�)M�−1A(T −1�)M−1�−1(T −1J−1). (16)

The direct Lax pair is covariant with respect to transformation {�,U,A} → {�̃, Ũ , Ã}
owing to the existence of the kernel: �̃ ≡ 0 if � = �. The covariance of the dual Lax pair is
proven by applying identity

K(T −1�(�,�)) = �(�,�)M +��.
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It follows from the compatibility conditions of transformed direct or dual Lax pairs that their
coefficients J, Ũ and Ã are new solutions of system (2). The transformation (13)–(16) carried
out with solution� of equation (1) is called the DT of the direct pair. The reduction constraint
(6) on the Lax pair coefficients is kept while performing this DT by imposing the following
conditions on solution� and its spectral parameter M:

� = diag(ϕj )B (17)

Bjk = exp(2π i(j − 1)(k − 1)/n) (j, k = 1, . . . , n)

M = µ diag(exp(2π i(j − 1)/n))
(18)

where ϕ ≡ ϕ(x, t, µ) = (ϕ1, . . . , ϕn)
T is a vector solution of equation (1) with the scalar

spectral parameter µ. If ψ = (ψ1, . . . , ψn)
T and ξ = (ξ1, . . . , ξn) are the vector solutions

of direct and dual Lax pairs with scalar spectral parameters λ and æ respectively, then
equations (13) and (14) under conditions (17) and (18) give the following expressions for
the components of transformed vector solutions:

ψ̃j = ψj,x − ϕj,x

ϕj
ψj (19)

ξ̃j = �j+1(ξ, ϕ)

T ϕj+1
(20)

(j = 1, . . . , n) with

�j(ξ, ϕ) =
∫ (x,t)

(x0,t0)

ξj−1T ϕj dx + exp(T σj − σj−1)
(T ξj )ϕj−1

æµ
dt +

ρj (ξ, ϕ)

æn − µn

∣∣∣∣
(x0,t0)

ρj (ξ, ϕ) =
n∑
k=1

æk−1µn−k
(

æ
∫ x+h

x

(T −1ξj−k−1)ϕj−k dx + ξj−kϕj−k

)
.

The transformation of solutions of the nonlocal Toda lattice (8), which corresponds to
transformations (19) and (20) of the solutions of associated Lax pairs, has the form

σ̃j = σj + log
T ϕj+1

ϕj
(j = 1, . . . , n). (21)

Similarly one can construct the DT formulae of the dual pair, using the matrix solution
of equation (3). It can be shown that the transformations of direct and dual pairs commute.
The conditions analogous to equations (17) and (18) are imposed on the matrix solution and
its spectral parameter for reduction constraint (6) to be inherited while carrying out the DT of
the dual pair. The corresponding formulae for transformations of Lax pair solutions and those
of the nonlocal Toda lattice are

ψ̃j = T −1�j(χ,ψ)

χj−1
(22)

ξ̃j = ξj,x − χj,x

χj
ξj (23)

σ̃j = σj + log
χj

T −1χj−1
(24)

(j = 1, . . . , n), where χ = (χ1, . . . , χn) is the vector solution of the dual Lax pair with
scalar spectral parameter ν. The product of transformations (19)–(21) and (22)–(24) yields
the formulae of the so-called binary DT
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ψ̃j = ψj − T −1�j(χ,ψ)

T −1�j(χ, ϕ)
ϕj (25)

ξ̃j = ξj − �j+1(ξ, ϕ)

�j+1(χ, ϕ)
χj (26)

σ̃j = σj + log
�j+1(χ, ϕ)

T −1�j(χ, ϕ)
(27)

(j = 1, . . . , n).
To keep reduction constraint (10) we have to impose additional conditions on solutions

of Lax pairs used in performing DTs. For example, if we put ϕj = αjϑ in transformation
(19)–(21), where α = exp(2π ik/n) (k = 0, . . . , n− 1) and ϑ solves system{

ϑx = −αµT ϑ + ρxϑ

ϑt = exp(ρ−T −1ρ)

αµ
T −1ϑ

then the transformed solution of equation (11) is

ρ̃ = ρ + (T − 1) logϑ.

Let us consider the zero background (σ = 0). Vectors ϕ and χ , which were exploited in
constructing the DTs, satisfy nonlocal linear systems{

ϕx = −µJT ϕ
ϕt = µ−1J−1T −1ϕ

(28)

{
χx = νT −1χJ

χt = −ν−1T χJ−1.
(29)

These systems have solutions depending on infinitely many parameters of the following form:

ϕj =
n−1∑
k=0

∑
mk

c
(mk)
k exp(2π i(j − 1)k/n) exp

(
p
(mk)
k x − t

/
p
(mk)
k

)
(30)

χj =
n−1∑
k=0

∑
nk

d
(nk)
k exp(−2π i(j − 1)k/n) exp

(
q
(nk)
k x − t

/
q
(nk)
k

)
(31)

(j = 1, . . . , n). Here p(mk)k and q(nk)k satisfy equations

p
(mk)

k + µ exp(2π ik/n) exp
(
p
(mk)

k h
)

= 0

q
(nk)
k − ν exp(2π ik/n) exp

(
−q(nk)k h

)
= 0

where (k = 0, . . . , n−1), c(mk)k and d(nk)k are arbitrary constants. Carrying out DT according to
equations (19)–(21) (or equations (22)–(24)) gives the one-soliton solutions, which depend on
infinitely many free parameters. This means that, in general, the set τj (j = 1, . . . , n) of the
one-soliton τ -functions of equations (9) and (12) contain infinitely many exponential terms.
The products of these exponents do not appear in the expression of the multi-soliton solutions
of the bilinear equations. One-soliton solutions in the nonlocal case form two families to be
produced by DTs of direct and dual pairs respectively, while in the local case the transformation
(22)–(24) can be obtained iterating the transformation (19)–(21).
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For n = 2, the components of the solution of system (28) are represented in the following
manner:

ϕj =
∑
p+

cp+ exp(p+x − t/p+) + (−1)j−1
∑
p−

cp− exp(p−x − t/p−)

(j = 1, 2), where p± satisfy equations

p ± µ exp(ph) = 0

and the summations are supposed over all solutions of the latter equations. The substitution
of the vector solution ϕ, such that ϕ1 = ±ϕ2, into equation (21) leads to the solutions of the
A0 Toda lattice (11). For real h, the simplest real nonsingular solution is

ρ = (T − 1) logϑ

where

ϑ = c1 exp(p1x − t/p1) + c2 exp(p2x − t/p2).

c1, c2 and µ are real constants, and c1c2 > 0, p1 and p2 are real solutions of the equation

p = µ exp(ph).

The iterations of transformations (19)–(27) allow us to construct the infinite hierarchies
of solutions of equations (8) and the corresponding solutions of Lax pairs (1) and (3). The
final expressions for the transformed quantities are brought to the determinant form. Taking
into account

λρj+1(ξ, ψ) = æρj (ξ, ψ) + (λn − æn)

(
æ
∫ x+h

x

(T −1ξj−1)ψj dx + ξjψj

)
æT −1�j(ξ,ψ) = λ�j+1(ξ, ψ) + ξjψj

we obtain

ρj (ξ̃ , ψ̃) = (æn − λn)
T ψj

T ϕj
�j(ξ, ϕ)− ρj (ξ, ψ)

�j(ξ̃ , ψ̃) = T ψj

T ϕj
�j(ξ, ϕ)−�j(ξ,ψ)

where ψ̃ and ξ̃ are defined according to equations (19) and (20). The formulae of the Nth
iteration of the DT of the direct pair are written using these equations as given

ψ̃j = �(j)[N + 1]

�(j)[N]

ξ̃ j =

∣∣∣∣∣∣∣∣∣∣∣

T ϕ
(1)
j+1 T ϕ

(1)
j+1,x . . . T ϕ

(1)
j+1,(N−2)x �j+1(ξ, ϕ

(1))

T ϕ
(2)
j+1 T ϕ

(2)
j+1,x . . . T ϕ

(2)
j+1,(N−2)x �j+1(ξ, ϕ

(2))

...
...

. . .
...

...

T ϕ
(N)

j+1 T ϕ
(N)

j+1,x . . . T ϕ
(N)

j+1,(N−2)x �j+1(ξ, ϕ
(N))

∣∣∣∣∣∣∣∣∣∣∣

/
T�(j+1)[N]

σ̃j = σj + log
T�(j+1)[N]

�(j)[N]
where

�(j)[N] = det
[
ϕ
(k)

j,(m−1)x

]
.

ϕ
(k)
j are the components of the vector solutions of equation (1) with scalar spectral parameter
µ(k), ϕ(N+1) = ψ (j = 1, . . . , n; k,m = 1, . . . , N). The reduction constraint (10) is inherited
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under the iterations by supposing N = ln (l = 1, 2, . . .), ϕ(ml+k) = (
ϕ
(k)

m+1, . . . , ϕ
(k)
m+n
)T

,
µ(ml+k) = µ(k) (m = 0, . . . , n− 1; k = 1, . . . , l).

The iterations of the transformations presented in this section on zero background give
the multi-soliton solutions of the nonlocal An−1 Toda lattice that depend on infinitely many
arbitrary parameters. The interaction of the one-soliton components in the multi-soliton
solution causes the shifts of the parameters of the one-soliton solutions.

5. Infinitesimal symmetries and conservation laws

Taking the limit ν → µ in equations (25)–(27) one finds solutions of the linearizations of the
direct and dual Lax pairs and the nonlocal Toda lattice

δψj = µ(T −1�j(χ,ψ))ϕj (32)

δξj = µ�j+1(ξ, ϕ)χj (33)

δσj = χjϕj (34)

(j = 1, . . . , n). These formulae establish infinitesimal DT ψ → ψ + εδψ , ξ → ξ + εδξ,
σ → σ + εδσ (ε = ν − µ). The closure of the differential one-form (4) immediately yields

(�JT�)t = (K−1(T �A)��−1)x .

In terms of the vector solutions ϕ and χ of the Lax pairs with scalar spectral parameter µ, this
identity reads as

 n∑
j=1

χj−1T ϕj



t

= µ−2


 n∑
j=1

(T χj+1)ϕj eT σj−σj−1



x

or, equivalently,

Tt + Xx = 0 (35)

where we use notations

T =
n∑
j=1

χj−1T ϕj (36)

X = −µ−2
n∑
j=1

(
T χj+1

)
ϕj eT σj−σj−1 . (37)

The hierarchies of infinitesimal symmetries and conservation laws of the nonlocal
generalization of the two-dimensional periodicAn−1 Toda lattice are obtained by substituting
into equations (34)–(37) the expansions of Lax pair solutions in the neighbourhood of singular
points on the spectral parameter plane. The components of the vector solutions ϕ and χ of the
direct and dual Lax pairs (1) and (3), whose coefficients are defined by equations (5)–(7), are
represented in the neighbourhood of point µ = ∞ in the following manner:

ϕj =
(

1 +
∞∑
k=1

A
(k)
j

�k

)(
�

µ

)j−1

e�(j−1)h−�x (38)

χj =
(

1 +
∞∑
k=1

B
(k)
j

�k

)(µ
�

)j−1
e−�(j−1)h+�x (39)

(j = 1, . . . , n), where � solves the equation

�n exp(n�h) = µn
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and coefficients A(k)j and B(k)j (k ∈ N) satisfy equations{
−A(k)j +A(k−1)

j,x = −T A(k)j+1 + σj,xA
(k−1)
j

A
(k)

j,t = eσj−T
−1σj−1T −1A

(k−1)
j−1{

B
(k)
j + B(k−1)

j,x = T −1B
(k)
j−1 − σj,xB

(k−1)
j

B
(k)

j,t = −eT σj+1−σj T B(k−1)
j+1 .

In the neighbourhood of singular point µ = 0 we have

ϕj =
∞∑
k=0

C
(k)
j α

1−j−kµk eαt/µ (40)

χj =
∞∑
k=0

D
(k)
j α

j−k−1µk e−αt/µ (41)

(j = 1, . . . , n). Here α is a root of the equation

αn = 1

and C(k)j and D(k)
j are solutions of the systems{
C
(k+1)
j,x = −TC(k)j+1 + σj,xC

(k+1)
j

C
(k)
j,t + C(k+1)

j = eσj−T
−1σj−1T −1C

(k+1)
j−1{

D
(k+1)
j,x = T −1D

(k)

j−1 − σj,xD
(k+1)
j

D
(k)

j,t −D
(k+1)
j = −eT σj+1−σj T D(k+1)

j+1 .

We can check by straightforward calculations that the systems determining coefficients
A
(k)
j , B

(k)
j , C

(k)
j and D(k)

j are compatible. The formulae for the expansions in series in the
neighbourhood of singular points of the Lax pair solutions in the nonlocal case seem to be
new. Note that, for µ = ∞, we have infinitely many types of asymptotic behaviour. It follows
after substituting expansions (38), (39) and (40), (41) in equations (34), (36) and (37) that
the solution of the linearization of the nonlocal Toda lattice, conserved densities and currents
admit the representation

δσj =
∞∑
k=0

δσ
(k,∞)
j �−k δσj =

∞∑
k=0

δσ
(k,0)
j µk

T =
∞∑
k=0

n∑
j=1

T
(k,∞)
j �−k T =

∞∑
k=0

n∑
j=1

T
(k,0)
j µk

X =
∞∑
k=0

n∑
j=1

X
(k,∞)

j �−k X =
∞∑
k=0

n∑
j=1

X
(k,0)
j µk

whose coefficients form the infinite hierarchies of infinitesimal symmetries and conservation
laws. The first few nontrivial coefficients are

δσ
(1,0)
j = σj,t δσ

(1,∞)

j = σj,x δσ
(2,∞)

j = σ 2
j,x +

∫ t (
eT σj+1−σj + eσj−T

−1σj−1

)
x

dt .

T
(2,∞)
j =

∫ t
(

eT σj−σj−1

∫ t (
eT

2σj+1−T σj + eσj−1−T −1σj−1

)
dt

)
dt −


 t∫

eT σj−σj−1 dt




2

,

X
(2,∞)

j = −eT σj−σj−1 .
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6. Conclusion

In this paper, the multi-soliton solutions of the nonlocal partner of the two-dimensional Toda
lattice have been obtained. Unlike in the local case, these solutions depend on infinitely
many free parameters. This feature of multi-soliton solution follows in the framework of the
Darboux transformation technique from the analogous property of the solutions of the Lax
pairs of the nonlocal Toda lattice. We have also presented the formulae of the expansions in
series on the spectral parameter powers of the solutions of the Lax pairs. These expansions
have been used to construct the hierarchies of infinitesimal symmetries and conservation laws
of the nonlocal two-dimensional Toda lattice.
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